
Copyright Melanie Nelson 2004

Biological Database Design
Week 2

Winter ’04

Melanie Nelson, Ph.D.



Copyright Melanie Nelson 2004

Final Project
! Design a database to store biological data. The 

database must integrate at least two sources of 
data.

! Can work alone or in teams of up to three members
! Week 4: Hand in plan

" What type of biological data will be stored
" Scope statement (what aspects of the data are to be 

covered by your database)
! Week 6: Hand in and present design

" Requirements document
" ER or UML diagram
" Short (1-2 page) report describing any difficult or unusual 

design decisions
" Make 10-15 minute presentation about DB to class



Copyright Melanie Nelson 2004

Database Design Process
! Process = steps to follow

! Increases chances of project success

" Encourages thinking about entire project before 
developing (less likely to get a patchwork data 
model)

" Find problems early, when its easier (and 
cheaper!) to fix them

! Process doesn’t have to be onerous. Tailor to 
the needs of your team.



Copyright Melanie Nelson 2004

Attributes of a Good Process

! Involves all “stakeholders” (people who have 
a stake in outcome of project)

! Documents requirements

! Produces a well-documented database

! Tests that the requirements have been met



Copyright Melanie Nelson 2004

Parts of a Standard Process
! Plan

" Gather and document requirements
" Develop a project plan (how long will it take? Who will be 

involved?)

! Design
" Design DB and applications to access it

! Develop
" Create database, code applications

! Test
" Does system meet all requirements?

! Deploy



Copyright Melanie Nelson 2004

“Waterfall” Process
Plan

Design

Develop

Test

Deploy

Traditional waterfall process is 
generally too rigid: most real 
projects will use a modified 
version or a more flexible 
process



Copyright Melanie Nelson 2004

Variations
! Prototyping

" Often used to help explore requirements and design 
options

" Shouldn’t allow prototype to morph into final app

! Agile programming
" “Extreme programming” is one version of this

" Eliminates formal design: design is part of development

" An attempt to mitigate risk of changing requirements

" Difficult to do with databases

" Biological databases may be particularly inappropriate for 
this technique



Copyright Melanie Nelson 2004

Step 1: Plan
! Gather database requirements

" What is the scope of the database?

" What data will be stored?

" What relationships among the data must be 
captured?

" What questions will need to be asked of the data?

" How quickly do the answers need to be 
generated?

" When must the final system be ready?



Copyright Melanie Nelson 2004

Attributes of Good Requirements

! Requirements should be testable
" Need to be able to certify that the final system meets them

! Requirements come from the users and the data
" Ask users what they need

" Document what the data requires

! Developers must also agree to requirements
" Agree only to what is feasible!

! Some requirements may contradict each other
" Return to the users to get priorities



Copyright Melanie Nelson 2004

Requirements
! Ways to determine requirements:

" User interviews
" Prototyping

! Unspoken tool: developers’ experience
" Users do not always know what is possible, and 

they self-edit in interviews
" Difficulty in determining complexity level

! Scientists may over-simplify complex relationships when 
explaining to a non-scientist (teacher mode)

! Some complexties may fall outside scope of database



Copyright Melanie Nelson 2004

Step 2: Design

! Developers determine how to meet the 
requirements

! Logical data model is developed
! Physical database design is developed
! Usually requires returning to the users for:

" Clarification of requirements
" Understanding data for the data model

! Strong temptation to short-change this step 
and rush to development



Copyright Melanie Nelson 2004

Logical Data Model vs. Physical 
Database Design
! Logical data model reflects structure of data

" Accurately capture meaning of data
" Accurately reflect relationships amongst the data

! Physical database design
" How tables will be structured
" Reflects any compromises necessary due to 

limitations of current database management 
systems



Copyright Melanie Nelson 2004

Design Tools
! Many tools to develop data model

" ERWin
" ER Studio
" DBDesigner (free: fabforce.net)

! Most tools will automatically generate SQL to 
create database from data model
" Physical database design may not completely 

mirror logical data model
" Be sure to document logical data model as well as 

physical design



Copyright Melanie Nelson 2004

Step 3: Develop
! Database is created
! Initial data is imported

" If there is no initial data, a test set should be used

! Initial version of the application is written
! Beware of “feature creep”

" Tendency to add features after the design is 
complete

" Rule of thumb: Only add if initial release will be 
useless without the feature. Otherwise, promise in 
a later release



Copyright Melanie Nelson 2004

Step 4: Test
! Test database with data that is:

" Real
" Representative
" Attempts to cover “pathological” cases

! Test “incorrect” data, too
" Database should reject

! Application is tested
" Application code may enforce some business 

rules
" Application is the “public face” of the database



Copyright Melanie Nelson 2004

Step 5: Deploy

! “Roll out” database and application
! Don’t forget training!

" Since domain support is weak, users decide what 
values are actually valid

" If users can’t make the application work, they will 
consider the project a failure



Copyright Melanie Nelson 2004

Data Modeling

! Model is a representation of our 
understanding of reality

! Data model reflects the database designer’s 
understanding of the data to be stored

! Don’t build a database without one!
" Data model is always implicit in database design
" Should be made explicit



Copyright Melanie Nelson 2004

Tools for Data Modeling
! Entity-relationship diagrams

" Data is modeled as entities and relationships 
among entities

" Most common in database design

! UML (Unified Modeling Language)
" Data is modeled as classes and relationships 

among classes
" More formal types of relationships
" Common in object-oriented programming



Copyright Melanie Nelson 2004

Entity-Relationship Diagrams

! There are many different types
! Differ primarily in syntax
! Pick one and be consistent
! For this class, I’ll use IDEF1X standard
! If you’re using a tool that doesn’t support 

IDEF1X, provide me with a mapping from 
IDEF1X to the syntax your tool uses



Copyright Melanie Nelson 2004

Entity-Relationship Diagrams
! Entity = a noun

" A thing or concept about which information will be 
stored

! Entities have attributes
" Information about the entity
" Each particular instance of an entity only has one 

copy of each attribute
" “capital city” is an attribute of “country”
" “ally” is not an attribute: a country can have 

multiple allies



Copyright Melanie Nelson 2004

Entities and Attributes

Bio_mol_id

Primary_name
Bio_mol_type_code
Function_desc

Bio_molecule

Entities are 
named

The attributes in the 
primary key are listed 
above the line

All other attributes 
are listed below the 
line



Copyright Melanie Nelson 2004

Entity-Relationship Diagrams

! “Multicopy” attributes are really other entities
! There are relationships among entities

" Relationships are often named to indicate their 
meaning

" Relationships have cardinality: 
! how many instances of one entity can reference the 

other entity
! default is “zero, one, or many”



Copyright Melanie Nelson 2004

Basic Relationships

Bio_mol_id

Primary_name
Bio_mol_type_code
Function_desc

Bio_molecule

Bio_sequence

Bio_seq_id

Bio_mol_id (FK)
Species
Source_database
Seq_text

Circle goes on the 
child entity: the 
entity that references 
the parent entity

P

“P” indicates that there must be at least 
one bio_sequence per bio_molecule, but 
that there may be more.

Dotted line indicates that 
this is a non-identifying
relationship: bio_mol_id 
is not part of the primary 
key of bio_sequence



Copyright Melanie Nelson 2004

Basic Relationships

Bio_mol_id

Primary_name
Bio_mol_type_code
Function_desc

Bio_molecule

Bio_molecule_name
Bio_mol_id (FK)
Bio_mol_name

Solid line indicates that 
this is an identifying
relationship: bio_mol_id 
is part of the primary key 
of bio_mol_name

Rounded corners on 
bio_mol_name indicates that it 
is identifier-dependent: it 
depends on bio_molecule for 
identification

Lack of number or letter on 
circle indicates that there can 
be zero, one or many 
bio_mol_names for each 
bio_molecule



Copyright Melanie Nelson 2004

Recursive and Optional Relationships

Bio_mol_id

Primary_name
Bio_mol_type_code
Function_desc
Expressed_bio_mol_id (O, FK)

Bio_molecule

Codes for

Diamond indicates that 
not all child entries 
reference a parent entry

If the relationship can be 
descrbed with 
something more than 
“has”, the description is 
associated with the 
relationship line

Relationships can be 
recursive. Recursive 
relationships must be non-
identifying



Copyright Melanie Nelson 2004

Specifying Cardinality

Bio_sequence

Bio_seq_id

Bio_mol_id (FK)
Species
Source_database

Sequence_text
Bio_seq_id (FK)

Seq_text

Z

“Z” indicates that there can be 
zero or one sequence_text for 
each bio_sequence

Used to avoid NULLs: perhaps in some cases we know that a 
sequence exists in a given species, but we don’t have the actual 
sequence text yet.



Copyright Melanie Nelson 2004

Specifying Cardinality

Lab_employee

Employee_id
Job_type

Bio_mol_id

Primary_name
Bio_mol_type_code
Function_desc

Bio_molecule

Employee_bio_molecule

Employee_id (FK)
Bio_mol_id (FK)

Research_start_date

1..3

A lab employee must be studying at least 
one bio_molecule, but many not be 
studying more than three bio_molecules

Is studying

Is studied 
by



Copyright Melanie Nelson 2004

Many-to-Many Relationships

Lab_employee

Employee_id
Job_type

Bio_mol_id

Primary_name
Bio_mol_type_code
Function_desc

Bio_molecule

Is studying 3

Can represent the previous relationship as a many-to-many relationship



Copyright Melanie Nelson 2004

Categorization Relationships

Protein_seq
Bio_seq_id (FK)

Bio_seq

Bio_seq_id

Bio_mol_id (FK)
Bio_seq_type
Species
Source_database
Seq_text

Isoelectric_point

Gene_seq
Bio_seq_id (FK)

Promoter_name

Single line under circle 
indicates that this is an 
incomplete categorization

Bio_seq_type

Identify attribute that 
indicates category



Copyright Melanie Nelson 2004

Categorization Relationships

Protein_seq
Bio_seq_id (FK)

Isoelectric_point

Gene_seq
Bio_seq_id (FK)

Promoter_name

Other_nucleotide_seq
Bio_seq_id (FK)
Bio_seq_desc

Bio_seq

Bio_seq_id

Bio_mol_id (FK)
Bio_seq_type
Species
Source_database
Seq_text

Double line under 
circle indicates 
that this is a 
complete 
categorization

Bio_seq_type



Copyright Melanie Nelson 2004

Data Modeling Method
! Many processes recommend:

" List entities
" Define relationships
" Fill in attributes
" Fill in datatypes

! I gather all at once
" Iteratively develop data model
" Focus on “higher level”, i.e., entities and basic relationships 

in early iterations
" Users don’t discriminate among entities, relationships, and 

attributes when describing their needs
" If you make users repeat themselves, they will lose 

patience with the process



Copyright Melanie Nelson 2004

Data Modeling Method
! Define scope
! Identify users of data within scope
! Develop initial ER diagram

" Serves as framework for user interviews
" Must be prepared to discard much, if not all, of it

! Interview users
" Don’t interview too many at once
" Don’t interview users with very distinct usages of 

data together (at least not initially)



Copyright Melanie Nelson 2004

Data Modeling Method
! Build/refine ER diagram

" Iterate!
" Sleep on it

! Data model isn’t complete until you specify 
datatypes for each attribute
" Datatypes are closest to domain support in most DBMS
" Text field lengths and exact names of datatypes are DBMS 

dependent
" If you know your DBMS, fill them in. Otherwise, put general 

type

! Document constraints that will be enforced in DB
" Business rules that are enforced by triggers
" Put in the data dictionary or in an appendix to ER diagram



Copyright Melanie Nelson 2004

Data Modeling Method

! Once you have a “full” model, test it with 
some sample data
" Can be done on paper, or by building DB and 

populating
" Look for the “pathological” examples

! Will almost certainly need to iterate through 
the last three steps many times:
" Interview users
" Refine data model
" Test data model



Copyright Melanie Nelson 2004

Rules for Better Design

! Use naming conventions

! Keep a data dictionary

! Don’t be afraid to discard parts (or all) of the 
model
" Don’t iterate to “patchwork quilt” design

" Catch and fix errors in design phase, when they 
are relatively cheap and easy to fix



Copyright Melanie Nelson 2004

Naming Conventions
! Naming conventions

" Make the data model more readable
" Simplify database queries
" Allow automated maintenance

! A real world “thing” should always be 
represented by the same name or 
abbreviation
" Sometimes, may use full word for table names 

and abbreviations in columns
" Whatever you do, be consistent and document it!



Copyright Melanie Nelson 2004

Naming Conventions

! Standardize formatting
" Separate words with underscores or hyphens: not 

both!

! Standardize suffixes
" “code” for letter based code

" “id” for numerical identifier



Copyright Melanie Nelson 2004

Data Dictionaries

! Data dictionaries
" Define terms used in a database

" Document what the data means
! “related_protein”

! Protein related by sequence identity, structural similarity, 
functional similarity, or any of the above?

" Makes it easier for programmers and users to 
ensure correct data is entered into database



Copyright Melanie Nelson 2004

Data Dictionaries

! Data dictionary should include all entities and 
attributes

! It is best practice to document relationships

! I create data dictionary for logical model, and 
modify it as I move to physical design
" Use data dictionary to document places where 

physical design does not match logical data model 



Copyright Melanie Nelson 2004

Normalization
! Normalization is a process that ensures 

database follows rules that protect data 
integrity
" Remove redundancy!

! As you get more experienced in data 
modeling, you’ll find you normalize “by 
default”, without thinking about rules

! Normalization is “loss-less” and reversible 
(via join)



Copyright Melanie Nelson 2004

Why Normalize
! Minimize risk of data inconsistencies

" Two copies of the same data can get “out of sync”

! Minimize update and delete anomolies
" If you update or delete one copy, what should happen to 

the other copy?

! Maximize database design stability
" Associate attributes with entities based on the meaning of 

the data, not on application requirements

! Minimize storage requirements
" Storing the same data multiple times wastes disk space
" Not as important as it used to be



Copyright Melanie Nelson 2004

First Normal Form
! There are no repeating or multivalued attributes
! “Repeat down the rows, not across the columns”

DUSP-2, dual specificity 
phosphatase 2, PAC1

Protein 3

Calmodulin, CaMProtein 1

Protein NameProtein ID

PAC1Dual specificity 
phosphatase 2

DUSP-2Protein 2

CaMCalmodulinProtein 1

Protein Name 3Protein Name 2Protein Name 1Protein ID

PAC1Protein 3

Dual specificity phosphatase 2Protein 3

DUSP-2Protein 3

CaMProtein 1

CalmodulinProtein 1

Protein NameProtein IDMultivalued attributes!

Repeating attributes!



Copyright Melanie Nelson 2004

Second Normal Form
! Attributes depend on the entire primary key

LowCHOCalpain334287

LowHEKICE1456

HighCHOICE3456

Expression
_level

Cell_lineProtein 
_name

Cell 
_id

Protein
_id

Protein_expression

Calpain34287

ICE456

Protein 
_name

Protein
_id

HEK1

CHO3

Cell_lineCell_id

Low334287

Low1456

High3456

Expression
_level

Cell 
_id

Protein
_id

Protein Protein_expression
Cell_line

•Protein_name depends on 
Protein_id, but not on Cell_id

•Cell_line depends on Cell_id, 
but not on Protein_id

•Only Expression_level depends 
on both parts of the key



Copyright Melanie Nelson 2004

Third Normal Form
! Attributes depend only on the primary key
! Except: they can depend on candidate keys, too

MAGKKG….www.ncbi.nlm.nih.gov/
RefSeq

RefSeq142

MGGKGL….us.expasy.org/sprotSwiss-Prot32

MLVEGF….us.expasy.org/sprotSwiss-Prot456

Seq_textSource_db_urlSource_dbProtein_
seq_id

MAGKKG….RefSeq142

MGGKGL….Swiss-Prot32

MLVEGF….Swiss-Prot456

Seq_textSource_dbProtein_
seq_id

www.ncbi.nlm.nih.gov/
RefSeq

RefSeq

us.expasy.org/sprotSwiss-Prot

Source_db_urlSource_db

Source_db_url 
depends on 
source_db, not 
protein_seq_id



Copyright Melanie Nelson 2004

Boyce-Codd Normal Form
! All attributes depend on each full candidate key, and not on a 

subset of any candidate key
! Particularly important to consider if using automatic numeric IDs

3

2

1

Seq_
id

LVEGF….www.ncbi.nlm.nih.gov/
RefSeq

RefSeq456

MGGKGL….us.expasy.org/sprotSwiss-
Prot

32

MLVEGF….us.expasy.org/sprotSwiss-
Prot

456

Seq_textSource_db_urlSource_
db

Protein
_id

www.ncbi.nlm.nih.gov/
RefSeq

RefSeq

us.expasy.org/sprotSwiss-Prot

Source_db_urlSource_db

LVEGF….RefSeq4563

MGGKGL….Swiss-Prot322

MLVEGF….Swiss-Prot4561

Seq_textSource_dbProtein_
id

Seq_
id

•Protein_id and 
Source_db together 
identify each row

•Source_db_url still 
depends on 
Source_db, but not 
on Protein_id



Copyright Melanie Nelson 2004

Fourth Normal Form
! A composite primary key should not contain 

independently multivalued components

CALM2Binds calciumCalmodulin

CALM2Activates CaMKIICalmodulin

CALM1Activates CaMKIICalmodulin

CALM1Binds calciumCalmodulin

GeneProtein_functionProtein_name

Activates CaMKIICalmodulin

Binds calciumCalmodulin

Protein_functionProtein_name

CALM2Calmodulin

CALM1Calmodulin

GeneProtein_name

Protein_name and 
Protein_function vary 
independently of Protein_name 
and Gene



Copyright Melanie Nelson 2004

Fifth Normal Form
! Remove pairwise cyclic dependencies from 

composite primary keys with three or more 
components



Copyright Melanie Nelson 2004

Normalization Rules
! Normalize to at least Boyce-Codd Normal 

Form
" 3NF is acceptable if you aren’t using system-

generated primary keys

! Goal is remove redundancy
" Redundancy can lead to inconsistency

! Always keep business rules in mind while 
normalizing
" Make sure you understand dependencies among 

attributes before moving to 2NF and beyond



Copyright Melanie Nelson 2004

Homework
! Reading for this week’s class: 

" Chapter 8 (Chapters 4-7 optional, covering design process)
" The Trip-Packing Dilemma article (on website)
" Optional: Writing Quality Requirements article (on website)

! Homework: Develop ER diagram, and include a list of questions 
you’d ask to refine your diagram.
" Grading focuses on normalization and diagram syntax
" We’ll discuss your questions and the design at the start of next 

week’s class

! Reading for next week’s class
" GenBank portion of the NCBI handbook, UniProt user manual (on 

website)
! Review for the midterm!

" Time for questions at the beginning of next week’s class



Copyright Melanie Nelson 2004

Homework
! Scientists want a database that stores information 

about proteins
! Each protein can have multiple names. All proteins 

have at least one name.
! Each protein can have multiple sequences, each 

one comes from an external database, and has an 
identifier assigned by that database. Not all proteins 
will have a sequence associated with them. 
" You can assume that sequences from different databases 

are different.

! Each protein can have multiple functions associated 
with it, but not all proteins will have an associated 
function.


